Publications

Publications are in reversed chronological order. You can search for papers using the following KGML categories: KG-Loss, KG-Architecture, KG-Pretraining, KG-Post-Processing, and Hybrid Modeling. For a full list, please check Google Scholar.

2024

  1. ArXiv     (KG-Loss, KG-Architecture)  
    hcomp.png
    What Do You See in Common? Learning Hierarchical Prototypes over Tree-of-Life to Discover Evolutionary Traits
    Harish Babu Manogaran, M Maruf, Arka Daw, and 10 more authors
    arXiv preprint, 2024
  2. ECCV     (KG-Architecture)  
    phylo_diffusion_architecture.jpg
    Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution
    Mridul Khurana, Arka Daw, M. Maruf, and 12 more authors
    ECCV, 2024
  3. ArXiv
    fishvista.jpg
    Fish-Vista: A Multi-Purpose Dataset for Understanding & Identification of Traits from Images
    Kazi Sajeed Mehrab, M Maruf, Arka Daw, and 8 more authors
    arXiv preprint arXiv:2407.08027, 2024
  4. AISY
    memtrack.jpg
    Motion Enhanced Multi-Level Tracker (MEMTrack): A Deep Learning-Based Approach to Microrobot Tracking in Dense and Low-Contrast Environments
    Medha Sawhney, Bhas Karmarkar, Eric J Leaman, and 3 more authors
    Advanced Intelligent Systems, 2024
  5. ICML     (KG-Loss)  
    neuroviz.png
    Neuro-Visualizer: An Auto-encoder-based Loss Landscape Visualization Method
    Mohannad Elhamod, and Anuj Karpatne
    ICML, 2024
  6. ArXiv
    kgml_overview_2024.png
    Knowledge-guided Machine Learning: Current Trends and Future Prospects
    Anuj Karpatne, Xiaowei Jia, and Vipin Kumar
    arXiv preprint arXiv:2403.15989, 2024
  7. JAMES     (Hybrid Modeling)  
    Modular Compositional Learning Improves 1D Hydrodynamic Lake Model Performance by Merging Process-Based Modeling With Deep Learning
    Robert Ladwig, Arka Daw, Ellen A Albright, and 6 more authors
    Journal of Advances in Modeling Earth Systems, 2024
  8. ICLR
    A simple interpretable transformer for fine-grained image classification and analysis
    Dipanjyoti Paul, Arpita Chowdhury, Xinqi Xiong, and 8 more authors
    International Conference on Learning Representations (ICLR, 2024
  9. BB     (KG-Loss)  
    Improving biosensor accuracy and speed using dynamic signal change and theory-guided deep learning
    Junru Zhang, Purna Srivatsa, Fazel Haq Ahmadzai, and 5 more authors
    Biosensors and Bioelectronics, 2024
  10. MEE
    A FAIR and modular image-based workflow for knowledge discovery in the emerging field of imageomics
    Meghan A Balk, John Bradley, M Maruf, and 8 more authors
    Methods in Ecology and Evolution, 2024

2023

  1. ArXiv
    ws3.png
    Beyond Discriminative Regions: Saliency Maps as Alternatives to CAMs for Weakly Supervised Semantic Segmentation
    M Maruf, Arka Daw, Amartya Dutta, and 2 more authors
    arXiv preprint arXiv:2308.11052, 2023
  2. KDD     (KG-Loss)  
    phyloNN_toc.png
    Discovering Novel Biological Traits From Images Using Phylogeny-Guided Neural Networks
    Mohannad Elhamod, Mridul Khurana, Harish Babu Manogaran, and 8 more authors
    In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023
  3. ICML     (KG-Loss)  
    r3.png
    Mitigating propagation failures in physics-informed neural networks using retain-resample-release (r3) sampling
    Arka Daw, Jie Bu, Sifan Wang, and 2 more authors
    arXiv preprint arXiv:2207.02338, 2023
  4. ArXiv
    graphart.png
    Let There Be Order: Rethinking Ordering in Autoregressive Graph Generation
    Jie Bu, Kazi Sajeed Mehrab, and Anuj Karpatne
    arXiv preprint arXiv:2305.15562, 2023
  5. Sensors     (KG-Architecture)  
    Reduction of biosensor false responses and time delay using dynamic response and theory-guided machine learning
    Junru Zhang, Purna Srivatsa, Fazel Haq Ahmadzai, and 5 more authors
    ACS sensors, 2023
  6. JCTC     (Hybrid Modeling)  
    Improving the Accuracy of Physics-Based Hydration-Free Energy Predictions by Machine Learning the Remaining Error Relative to the Experiment
    Lewis Bass, Luke H Elder, Dan E Folescu, and 4 more authors
    Journal of chemical theory and computation, 2023

2022

  1. BigData
    multitask.png
    Multi-task Learning for Source Attribution and Field Reconstruction for Methane Monitoring
    Arka Daw, Kyongmin Yeo, Anuj Karpatne, and 1 more author
    In 2022 IEEE International Conference on Big Data (Big Data), 2022
  2. TIST     (KG-Loss)  
    cophy.png
    CoPhy-PGNN: Learning physics-guided neural networks with competing loss functions for solving eigenvalue problems
    Mohannad Elhamod, Jie Bu, Christopher Singh, and 5 more authors
    ACM Transactions on Intelligent Systems and Technology, 2022
  3. Book Chapter     (KG-Architecture)  
    pga_lstm.png
    Physics-guided architecture (PGA) of LSTM models for uncertainty quantification in lake temperature modeling
    Arka Daw, R Quinn Thomas, Cayelan C Carey, and 3 more authors
    In Knowledge Guided Machine Learning, 2022
  4. MEE     (KG-Architecture)  
    hgnn.png
    Hierarchy-guided Neural Networks for Species Classification
    Mohannad Elhamod, Kelly M. Diamond, A. Murat Maga, and 8 more authors
    Methods in Ecology and Evolution, 2022
  5. Book Chapter     (KG-Loss, Hybrid Modeling)  
    Physics-guided neural networks (pgnn): An application in lake temperature modeling
    Arka Daw, Anuj Karpatne, William D Watkins, and 2 more authors
    In Knowledge Guided Machine Learning, 2022
  6. APR     (KG-Loss)  
    Physics-Informed Machine Learning for Optical Modes in Composites
    Abantika Ghosh, Mohannad Elhamod, Jie Bu, and 3 more authors
    Advanced Photonics Research, 2022
  7. Nature Sc. Data     (KG-Post-Processing)  
    ReaLSAT, a global dataset of reservoir and lake surface area variations
    Ankush Khandelwal, Anuj Karpatne, Praveen Ravirathinam, and 5 more authors
    Scientific data, 2022
  8. Deep learning methods for predicting fluid forces in dense particle suspensions
    Neil Raj Ashwin, Ze Cao, Nikhil Muralidhar, and 2 more authors
    Powder Technology, 2022
  9. A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning
    Reza Sepasdar, Anuj Karpatne, and Maryam Shakiba
    Computer Methods in Applied Mechanics and Engineering, 2022
  10. Book Chapter     (KG-Architecture)  
    Science-Guided Design and Evaluation of Machine Learning Models: A Case-Study on Multi-Phase Flows
    Nikhil Muralidhar, Jie Bu, Ze Cao, and 4 more authors
    In Knowledge Guided Machine Learning, 2022
  11. Book
    Knowledge guided machine learning: Accelerating discovery using scientific knowledge and data
    Anuj Karpatne, Ramakrishnan Kannan, and Vipin Kumar
    2022
  12. Book Chapter     (KG-Loss, KG-Pretraining)  
    Physics-guided recurrent neural networks for predicting lake water temperature
    Xiaowei Jia, Jared D Willard, Anuj Karpatne, and 4 more authors
    In Knowledge Guided Machine Learning, 2022

2021

  1. NeurIPS
    dam.png
    Learning compact representations of neural networks using discriminative masking (DAM)
    Jie Bu, Arka Daw, M Maruf, and 1 more author
    Advances in Neural Information Processing Systems, 2021
  2. ITSC
    papakis.png
    A graph convolutional neural network based approach for traffic monitoring using augmented detections with optical flow
    Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne
    In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 2021
  3. KDD     (KG-Architecture)  
    pidgan.png
    PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics
    Arka Daw, M Maruf, and Anuj Karpatne
    In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021
  4. TDS     (KG-Loss, KG-Pretraining)  
    Physics-guided machine learning for scientific discovery: An application in simulating lake temperature profiles
    Xiaowei Jia, Jared Willard, Anuj Karpatne, and 4 more authors
    ACM/IMS Transactions on Data Science, 2021
  5. SDM
    Maximizing cohesion and separation in graph representation learning: A distance-aware negative sampling approach
    M Maruf, and Anuj Karpatne
    In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), 2021
  6. Exploratory analysis of machine learning methods in predicting subsurface temperature and geothermal gradient of Northeastern United States
    Arya Shahdi, Seho Lee, Anuj Karpatne, and 1 more author
    Geothermal Energy, 2021
  7. SDM     (KG-Loss)  
    Quadratic residual networks: A new class of neural networks for solving forward and inverse problems in physics involving pdes
    Jie Bu, and Anuj Karpatne
    In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), 2021
  8. ICDM     (KG-Architecture)  
    Phyflow: Physics-guided deep learning for generating interpretable 3D flow fields
    Nikhil Muralidhar, Jie Bu, Ze Cao, and 4 more authors
    In 2021 IEEE International Conference on Data Mining (ICDM), 2021

2020

  1. Big Data     (KG-Loss, KG-Architecture)  
    phynet.png
    Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems
    Nikhil Muralidhar, Jie Bu, Ze Cao, and 4 more authors
    Big Data, 2020
    PMID: 33090021
  2. arXiv
    gcnnmatch.png
    Gcnnmatch: Graph convolutional neural networks for multi-object tracking via sinkhorn normalization
    Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne
    arXiv preprint arXiv:2010.00067, 2020
  3. SDM     (KG-Architecture)  
    Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling
    Arka Daw, R Quinn Thomas, Cayelan C Carey, and 3 more authors
    In Proceedings of the 2020 siam international conference on data mining, 2020
  4. SDM     (KG-Loss, KG-Architecture)  
    Phynet: Physics guided neural networks for particle drag force prediction in assembly
    Nikhil Muralidhar, Jie Bu, Ze Cao, and 4 more authors
    In Proceedings of the 2020 SIAM international conference on data mining, 2020
  5. Eco. M.     (Hybrid Modeling)  
    Predicting lake surface water phosphorus dynamics using process-guided machine learning
    Paul C Hanson, Aviah B Stillman, Xiaowei Jia, and 8 more authors
    Ecological Modelling, 2020
  6. AMT
    A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differential absorption spectroscopy measurements
    Yun Dong, Elena Spinei, and Anuj Karpatne
    Atmospheric Measurement Techniques, 2020
  7. Best Research Paper Award
    Biodiversity image quality metadata augments convolutional neural network classification of fish species
    Jeremy Leipzig, Yasin Bakis, Xiaojun Wang, and 8 more authors
    In Research Conference on Metadata and Semantics Research, 2020

2019

  1. SDM     (KG-Loss, KG-Architecture)  
    phynet_color.png
    Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids
    Nikhil Muralidhar, Jie Bu, Ze Cao, and 4 more authors
    arXiv preprint arXiv:1911.04240, 2019
  2. SDM     (KG-Loss, KG-Pretraining)  
    Physics guided RNNs for modeling dynamical systems: A case study in simulating lake temperature profiles
    Xiaowei Jia, Jared Willard, Anuj Karpatne, and 4 more authors
    In Proceedings of the 2019 SIAM international conference on data mining, 2019
  3. SDM
    Spatial context-aware networks for mining temporal discriminative period in land cover detection
    Xiaowei Jia, Sheng Li, Ankush Khandelwal, and 3 more authors
    In Proceedings of the 2019 SIAM International Conference on Data Mining, 2019
  4. SDM
    Classifying heterogeneous sequential data by cyclic domain adaptation: An application in land cover detection
    Xiaowei Jia, Guruprasad Nayak, Ankush Khandelwal, and 2 more authors
    In Proceedings of the 2019 SIAM International Conference on Data Mining, 2019
  5. IJCAI
    Recurrent Generative Networks for Multi-Resolution Satellite Data: An Application in Cropland Monitoring.
    Xiaowei Jia, Mengdie Wang, Ankush Khandelwal, and 2 more authors
    In IJCAI, 2019
  6. WRR     (KG-Loss, KG-Pretraining)  
    Process-guided deep learning predictions of lake water temperature
    Jordan S Read, Xiaowei Jia, Jared Willard, and 8 more authors
    Water Resources Research, 2019

2018

  1. TKDE
    Machine learning for the geosciences: Challenges and opportunities
    Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, and 2 more authors
    IEEE Transactions on Knowledge and Data Engineering, 2018
  2. CSUR
    Spatio-temporal data mining: A survey of problems and methods
    Gowtham Atluri, Anuj Karpatne, and Vipin Kumar
    ACM Computing Surveys (CSUR), 2018
  3. BigData     (KG-Loss)  
    Incorporating prior domain knowledge into deep neural networks
    Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, and 2 more authors
    In 2018 IEEE international conference on big data (big data), 2018
  4. Book
    Introduction to Data Mining (2nd Edition)
    Pang-Ning Tan, M Steinbach, A Karpatne, and 1 more author
    2018

2017

  1. RSE     (KG-Post-Processing)  
    An approach for global monitoring of surface water extent variations in reservoirs using MODIS data
    Ankush Khandelwal, Anuj Karpatne, Miriam E Marlier, and 3 more authors
    Remote sensing of Environment, 2017
  2. TKDE
    kgml_tkde_2017.png
    Theory-guided data science: A new paradigm for scientific discovery from data
    Anuj Karpatne, Gowtham Atluri, James H Faghmous, and 6 more authors
    IEEE Transactions on knowledge and data engineering, 2017
  3. KDD
    Tripoles: A new class of relationships in time series data
    Saurabh Agrawal, Gowtham Atluri, Anuj Karpatne, and 4 more authors
    In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017
  4. BigData
    Joint sparse auto-encoder: A semi-supervised spatio-temporal approach in mapping large-scale croplands
    Xiaowei Jia, Yifan Hu, Ankush Khandelwal, and 2 more authors
    In 2017 IEEE International Conference on Big Data (Big Data), 2017

2016

  1. Book Chapter
    Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities
    Anuj Karpatne, Ankush Khandelwal, Xi Chen, and 3 more authors
    Computational sustainability, 2016
  2. GRSM
    Monitoring land-cover changes: A machine-learning perspective
    Anuj Karpatne, Zhe Jiang, Ranga Raju Vatsavai, and 2 more authors
    IEEE Geoscience and Remote Sensing Magazine, 2016
  3. BigData
    Identifying dynamic changes with noisy labels in spatial-temporal data: A study on large-scale water monitoring application
    Xiaowei Jia, Xi Chen, Anuj Karpatne, and 1 more author
    In 2016 IEEE International Conference on Big Data (Big Data), 2016

2015

  1. GEB
    BHPMF–a hierarchical B ayesian approach to gap-filling and trait prediction for macroecology and functional biogeography
    Franziska Schrodt, Jens Kattge, Hanhuai Shan, and 8 more authors
    Global Ecology and Biogeography, 2015
  2. SDM
    Ensemble learning methods for binary classification with multi-modality within the classes
    Anuj Karpatne, Ankush Khandelwal, and Vipin Kumar
    In SIAM International Conference on Data Mining (SDM), 2015
  3. ICDM
    Adaptive heterogeneous ensemble learning using the context of test instances
    Anuj Karpatne, and Vipin Kumar
    In 2015 IEEE International Conference on Data Mining, 2015
  4. CS&E
    A guide to earth science data: Summary and research challenges
    Anuj Karpatne, and Stefan Liess
    Computing in Science & Engineering, 2015

2014

  1. SDM
    Predictive Learning in the Presence of Heterogeneity and Limited Training Data
    Anuj Karpatne, Ankush Khandelwal, Shyam Boriah, and 1 more author
    In SDM, 2014

2013

  1. Book Chapter
    Earth science applications of sensor data
    Anuj Karpatne, James Faghmous, Jaya Kawale, and 8 more authors
    Managing and Mining Sensor Data, 2013
  2. Twin support vector regression for the simultaneous learning of a function and its derivatives
    Reshma Khemchandani, Anuj Karpatne, and Suresh Chandra
    International Journal of Machine Learning and Cybernetics, 2013
  3. Proximal support tensor machines
    Reshma Khemchandani, Anuj Karpatne, and Suresh Chandra
    International Journal of Machine Learning and Cybernetics, 2013

2012

  1. CIDU
    Importance of vegetation type in forest cover estimation
    Anuj Karpatne, Mace Blank, Michael Lau, and 4 more authors
    In 2012 Conference on Intelligent Data Understanding, 2012
  2. CIDU
    A new data mining framework for forest fire mapping
    Xi C Chen, Anuj Karpatne, Yashu Chamber, and 8 more authors
    In 2012 Conference on Intelligent Data Understanding, 2012

2011

  1. Generalized eigenvalue proximal support vector regressor
    Reshma Khemchandani, Anuj Karpatne, and Suresh Chandra
    Expert Systems with Applications, 2011